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‘ NUMERICAL DISSIPATION I

1. The governing equations of most physical systems are
dominated by convective and dissipative processes.

. In processes governed by nonlinear equations, such as
the Euler and Navier-Stokes equations, there can be a
continual production of high-frequency components of

the solution, leading, for example, to the formation of

shock waves.

. In a real physical problem, the production of high
frequencies is eventually limited by viscosity.




. However, when we solve the Euler equations
numerically, we have neglected viscous effects.

. Thus the numerical approximation must contain some
inherent dissipation to limit the production of
high-frequency modes.

. Although numerical approximations to the
Navier-Stokes equations contain dissipation through
the viscous terms, this can be insufficient, especially

at high Reynolds numbers, due to the limited grid

resolution which is practical.

. Unless the relevant length scales are resolved, some
form of added numerical dissipation is required




8. The addition of numerical dissipation is tantamount
to intentionally introducing nonphysical behavior,
and must be carefully controlled such that the error
introduced is not excessive.

. A centered approximation to a first derivative is
non-dissipative, i.e., the eigenvalues of the associated
circulant matrix (with periodic boundary conditions)

are pure imaginary.

. A non-centered (upwind) approximation to a first

derivative is dissipative, e.g., 15¢ Order backward

differencing leads to eigenvalues which have a real

part.




11. For our model wave equation, the sign of the wave
speed a combined with a specific choice of difference
operator can lead a positive real part of the

eigenvalues and therefore inherent instability.




‘One-Sided First-Derivative Differencing'

1. Starting with our favorite wave equation
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2. Consider the generalize three point difference
operator
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‘ Backward /Forward Difference Operator I

1. The operator is divided into
(a) Antisymmetric component (—u;_1 + uj+1)/2Az

(b) Symmetric component
Bl—uj1 +2uj —ujp1) /282

(c) Antisymmetric component: 2"¢ centered

difference.
(d) With 8 # 0, the operator is only 1°¢ accurate.
(e) A backward difference operator is given by § =1
(f) A forward difference operator is given by g = —1.




‘Type Dependent Differencing'

. For periodic boundary conditions, matrix operator is
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. The eigenvalues of this matrix are,
m=0,1,.... M —1

—a {5 [1—(:08 (27Tm

. For a positive, forward difference (8 = —1):
R(Am) >0




. Centered difference operator (5 =0): ®(A,,) =0
. For a positive, backward difference: R(A,,) < 0.

. The forward difference operator is inherently unstable

. Centered /backward operators are inherently stable.

. If a is negative, the roles are reversed.
. R(A) # 0, the solution will either grow or decay.

. Equation 2 can be used with a switching scheme:
(a) fa>0,set =1
(b) If a <0, set = —1




The Modified Partial Differential Equation

1. Taylor series expansion of the terms in Eq. 2.
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2. The antisymmetric portion introduces odd derivative

terms.

3. The symmetric portion introduces even derivatives.




The Modified Partial Differential Equation

1. Substituting into Eq. 1 gives
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. The modified PDE we are really solving.

. Consistent with Eq. 1, two equations identical when
Az — 0.

. In practice, Az can be small, but it is not zero
. BEach term given by Eq. 4 is excited to some degree.

. The actual PDE being solved is different than the
original, Eq.1




‘Eﬂ'ect of Errors Terms: Modified PDEI

1. Consider the simple linear partial differential equation
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2. Periodic BC and impose an IC: u = e?**.

3. Wayve-like solution to Eq. 5 of the form
U(LC,t) — eifs::ce(r—i—z's)t
4. r and s satisfy the condition
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r=—r’(v—7K%), s=—k(a+yK?)
. Solution contains both amplitude and phase terms.

ik[z—(a+vK?)t] (6)
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amplitude phase

. The amplitude of the solution depends only upon v
and 7, the coeflicients of the even derivatives in Eq. 5

. Phase depends only on a and -y, the coefficients of the
odd derivatives.




‘Eﬂ'ect of Errors Terms: Modified PDEI

1. Wave speed a is positive

(a) Backward difference (8 = 1) modified PDE:

v—1K>>0
Amplitude of the solution decays.
Deliberately adding dissipation to the PDE.

Forward difference scheme (8 = —1) is equivalent to
deliberately adding a destabilizing term to the PDE.




2. Phase of the solution in Eq. 6

(a) Speed of propagation is a + yx°
(b) Modified PDE, Eq. 4,y = —aAxz"/6.

(¢c) Phase speed of the numerical solution is less than the

actual phase speed, dispersion.




‘ Artificial Dissipation I

. Note that the use of one-sided differencing schemes is
not the only way to introduce dissipation.

. Any symmetric component in the spatial operator
introduces dissipation (or amplification).

. Therefore, one could choose 8 = 1/2 in Eq. 2.

. The resulting spatial operator is not one-sided, but it
is dissipative.

. Biased schemes use more information on one side of
the node than the other.




‘Third-Order backward Difference.

1. Third-order backward-biased scheme is given by

1
(5 ’U,)J 61 (’U,J 2 — 6Uj_1 + 3uj + 2’U,j_|_1)

1
— 8uj1 + 8ujp1 — ujy2)

—4dujq +6u; — dujpr +ujio)] (7)

2. The antisymmetric component of this operator is the
fourth-order centered difference operator.




3. The symmetric component approximates
AT Uy 00 [12.

4. Operator produces fourth-order accuracy in phase
with a third-order dissipative term.




‘The Lax-Wendroff Method'

1. Previous discussion implies:

(a) Introduce numerical dissipation using one-sided
differencing

(b) Backward differencing if the wave speed is positive

(c) Forward differencing if the wave speed is negative.

2. Lax-Wendroft Method: introduces dissipation
independent of the sign of the wave speed

3. Differs conceptually from the methods considered
previously




‘Derivation of Lax-Wendroff '

1. Taylor-series expansion in time:
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2. Replace time derivatives with space derivatives using
PDE
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3. Replace the space derivatives 3-point centered
difference
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‘Stability of Lax-Wendroft I

. For periodic boundary conditions, fully-discrete
matrix operator:

oo (G5 (2)]- ()

. Eigenvalues of this matrix are, m =0,1,... , M — 1

ah \ > 2mm ah | 2mm
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. For | 4| < 1: eigenvalues have modulus less than or equal

to unity

. Method is stable independent of the sign of a.




5. CFL = |Z—i’;3 : Courant (or CFL) number.

6. Ratio of the distance traveled by a wave in one time step

to the mesh spacing.




‘Modiﬁed PDE for Lax-Wendroft I

. See text for derivation of Modified PDE

. Leading error terms appear on the right side of the
equation.

. Odd derivatives on the right side lead to unwanted

dispersion

. Even derivatives lead to dissipation,or amplification,




depending on the sign.

5. Leading error term in the Lax-Wendroff method is
dispersive and proportional to
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6. Dissipative term is proportional to
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7. Term has the appropriate sign and hence the scheme
is truly dissipative as long as C, < 1.




‘ MacCormack’s method I

. MacCormack’s Method is closely related to
Lax-Wendroft

. MacCormack’s Time-marching method, (see Chapter
6 of text)

~ /
Up+1 = Up+ hu,
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. Use first-order backward differencing in the first stage

. Use first-order forward differencing in the second
stage,




. Dissipative second-order method is obtained.
. For the linear convection equation

n n h n
e SO OB
ugn—l—l)

. Can be shown to be identical to the Lax-Wendroft
method.

. MacCormack’s method has the same dissipative and

dispersive properties as the Lax-Wendroff method.

. The two methods differ when applied to nonlinear
hyperbolic systems




‘ UPWIND SCHEMES '

1. Numerical dissipation can be introduced in the
spatial difference operator using one-sided difference
schemes.

. Based on stability arguements: the direction of the

one-sided operator depends on the sign of the wave

speed.

. Hyperbolic system of equations: wave speeds can be

both positive and negative.




4. In the wave equation example:
(a) If a > 0, Backward differencing
(b) If a < 0, Forward differencing
5. Eigenvalues of the flux Jacobian for the
one-dimensional Euler equations
(a) u,u + ¢,u — ¢ where ¢ is the speed of sound.

(b) When the flow is subsonic u < ¢ , these are of mixed
sign.

(c) To apply one-sided differencing schemes to such

systems, some form of splitting is required.




‘ Characteristic Splitting I

1. Consider again the linear convection equation:
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2. With the sign of a arbritary .
3. Rewrite Eq. 12

Ou
oz
(a) If a >0, then a™ =a >0, a~
(b) If a <0, thena™ =0, a~ =a

(at4+a )=— =0 ;




(¢) For the a™ (> 0) term we can safely backward

difference.

(d) For the a= (< 0) term forward difference.
4. Basic concept behind upwind methods

5. Some decomposition or splitting of the fluxes into
terms which have positive and negative characteristic
speeds so that appropriate differencing schemes can
be chosen.




‘ Flux-Vector Splitting I

1. Linear, constant-coefficient, hyperbolic system of

PDE

du Of OJu du

(a) Can be decoupled into characteristic equations

8?1)7; I A\ Bwi
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(b) Wave speeds, A;: eigenvalues of the Jacobian

matrix, A




(c) The w;’s are the characteristic variables.

(d) Backward difference if the wave speed, A;, is
positive,

(e) Forward difference if the wave speed is negative.




‘__ Characteristic Splitting'

. In gerneral, we do not go to characteristic space (w;),
but stay in the flux space u, A, f

. Split the matrix of eigenvalues, A, into two
components

A=AT+ A"

A+ A
A+

A+

. A" contains the positive eigenvalues

. A~ contains the negative eigenvalues




- Type Dependent Differencing

. Rewrite the system in terms of characteristic
variables as

ow ow JOw ow ow

FATI— AT — =0 (17)
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. Spatial terms split into two components according to
the sign of the wave speeds.

. Backward differencing for the A+g—;" term

. Forward differencing for the A~ ‘g—;" term.




‘ Flux vector Splitting'

1. Premultiplying by X, the matrix of right eigenvectors
of A, and inserting the product X !X in the spatial

terms gives

+ v —1 — yv-1
OXw OXA X" Xw 0XA X Xw:O (18)

o bz " bz
2. Define
AT = XATX A" =XA X! (19)

(a) AT has all positive eigenvalues, by construction

(b) A~ has all negative eigenvalues, by construction




3. Recall that u = Xw

8_u N OATu N OA u
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4. Finally the split lux vectors are defined as
f+ o A—I_u’ f_ = A_U

5. Leading to the Flux Vector Splitting Form

ou OfT Of
E_l_ Oz " Ox =0




‘Flux vector Splitting'

1. In the linear case, the definition of the split fluxes
follows directly from the definition of the flux,

f = Au.

2. For the Euler equations, f is also equal to Au as a

result of their homogeneous property, as discussed in
Appendix C of the text.




3. Note that

f=f+f (23)

4. Thus by applying backward differences to the fT
term and forward differences to the f— term, we are
in effect solving the characteristic equations in the

desired manner.




‘Implicit Implementation of FVSI

. Implicit time-marching: need Jacobians of the split

flux vectors.

. In the nonlinear case,

8f+
Ou

par, oo (24

. Signs of the Jacobians must have corresponding =+

eigenvalues
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4. For the Euler equations:

(a) AT has eigenvalues which are all positive

(b) A=~ has all negative eigenvalues.




‘Artiﬁcial Dissipation Concepts'

1. Numerical dissipation can be introduced by using
one-sided differencing schemes together with some

form of flux splitting.

. Dissipation can also be introduced by adding a
symmetric component to an antisymmetric

(dissipation-free) operator.

. Generalize the concept of upwinding to include any
scheme in which the symmetric portion of the
operator is dissipative.




‘Construction: Artificial Dissipation'

. Define

Ujt1 — Uj—1 —Ui1 + 2Uu; — uj—1
(§u); = WML (§r), = L T

2Ax ’ 2Ax
. Applying 6, = 6 + 02 to the spatial derivative in Eq.
14 is stable if A; > 0 and unstable if \; < 0.

. 0, =02 — 07 is stable if A\; < 0 and unstable if A\; > 0.

. Appropriate implementation is thus

Aibz = Aid% + |62

. Extension to a hyperbolic system by applying the




above approach to the characteristic variables

5. (Au) = 6%(Au) + 0% (|Alu)

Ouf = 0o f + 0. (|Alu)

|A| = X|A| X!

. The second spatial term is known as artificial
dissipation.

. Sometimes referred to as artificial diffusion or
artificial viscosity.

. Appropriate choices of 0¢ and 07, this approach can
be related to the upwind approach.




. It is common to use the following operator for o}

€
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. € 18 a problem-dependent coefficient.

. Symmetric operator approximates eAz3u ., and

thus introduces a third-order dissipative term.

. Appropriate value of €, this often provides sufficient
damping of high frequency modes without greatly
affecting the low frequency modes.




‘Nonlinear Artificial Dissipation, JST I

1. 2" and 4'" derivative AD employing a pressure gradient
switch and spectral radius scaling.

Val(ojy1 +0;) (6;-2)A;CQJ' — €§4)A$V$A$Qj) /Ax

with 65-2) = €2 maX(TjJrl, Tj? Tj—l)?
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. Typical values of the constants are e2 = 1/4 and
es = 1/100.

. The term o; is a spectral radius scaling and is defined as
o; = |u| + a with a the speed of sound.




‘Linear Constant Coeflicient AD I

1. Early forms of Artificial Dissipation were linear

(0 = 1), without the pressure switch.

2. NACAQO012, transonic solution




‘Non-Linear Artificial Dissipation I

1. Current




